空气也能这样玩?水下恒压压缩空气储能来了!
海上可再生能源发电,尤其是风电,已进入规模化发展时期。据报道,2023年全球海上风电新增装机7.3GW,累计超过50GW,其中,中国海上风电累计装机达到37.7GW。
由于可再生能源具有波动性、随机性和不可预测性,难以满足居民用户稳定用能需求。储能通过在电力过剩时储存盈余电力,在电力不足时释放储存的能量补充电力缺口,能够实现可再生能源平滑输出,保障用户用能需求,在发电侧与用户侧之间建立起一条弹性纽带。
随着海上可再生能源大规模发展,海上储能需求急剧增加。如何开发出经济、适用、可靠的海上储能技术是储能相关从业者们首先需要解决的问题。
压缩空气储能技术
压缩空气储能技术是基于燃气轮机技术发展起来的物理储能技术,系统原理如下图所示,具有储能规模大、放电时间长、建设和运行成本低、寿命长等特点。
储能时,利用过剩或非峰值电能驱动电动机旋转,将电能转化为机械能,电动机带动压缩机(一种将低压气体提升为高压气体的机械)将空气从低压状态压缩至高压状态,并将高压空气储存在储气装置(盐穴、人工硐室或储气罐)中,最终将电能转换成空气热能和压力能。
释能时,高压空气从储气装置释放,进入燃烧室同燃料一起燃烧,或在换热器中被其他热流体加热,高温高压气体驱动透平(将流体介质中的能量转换成机械功的机器)旋转,透平带动发电机发电,最终将空气内能转换成电能。

压缩空气储能技术示意图 (图片来源:中国科学院工程热物理研究所)
中国科学院工程热物理研究所从2004年开始开展不需要燃烧燃料的先进压缩空气储能技术研究,完成了先进压缩空气储能技术从kW级到300MW级的蜕变,成功将先进压缩空气储能技术从理论研究推向商业化应用阶段。
另辟蹊径
无论是传统压缩空气储能,还是目前已进入商业化初期的先进压缩空气储能,均采用容积不变的储气装置,属于恒容压缩空气储能。但现行的恒容压缩空气储能技术,难以满足海上可再生能源开发对储能技术的迫切需求,它面临三大关键限制因素:
第一,沿海特殊的地理环境中,没有密封性好的地下盐穴、无法建设地下人工储气硐室,地面空间不足以安置大规模储气罐,因此难以找到合适的大规模储气场所;
第二,采用恒容储气,储释能过程中储气装置内部压力和温度不断变化,为使得透平输出功率相对稳定,需要通过节流阀调节进气压力,能量损失大,效率有待进一步提高;
第三,受限于储气装置内部压力变化和调节需求,设备需要不断变化运行工作状态,以适应储气库内压力和调节需求,频繁变化工况中效率急剧下降,缺乏可再生能源侧集成储能系统的相关理论支持。
针对以上关键限制因素,中国科学院工程热物理研究所储能研发中心的研究人员准备另辟蹊径——开发水下恒压压缩空气储能技术。
我们知道,水下特定位置的水压与水深一一对应,只要水深不变,水压便维持不变,因此,设法将水压传递给储气装置内部的空气就可实现恒压储气和恒压放气。
科研人员由此发展了闭式柔性储气装置和开式刚性储气装置两种类型的水下恒压储气装置。
柔性储气装置外壁与水接触,水压通过柔性储气装置传递给装置内部空气,储气装置内部气量变化只会影响储气装置内部实际空间大小,不会导致压力变化。
开式刚性储气装置底部开孔,直接与水接触,在充放气过程中,水通过开孔进入或被排出储气装置。同样地,储气装置内部气量变化不会导致压力变化。
这两种储气装置均能实现装置内部空气在排气压力不变的情况下完全释放,可以完全利用储气空间,储能密度高。
由于储/释能过程中,储气库内压力均维持不变,压缩机和透平的工作压力也可以根据储气库设计压力最优化设计,且始终工作在设计点附近,系统能量损失小,运行效率高。
通过对比研究发现,恒压系统较恒容系统效率高3%-6%,且储气压力越大,恒压系统储能密度优势越明显,绝热恒压系统储能密度可达恒容系统3倍及以上。
不断优化海上、陆地应用
现行的压缩空气储能技术受限于沿海陆地资源条件,而水下恒压压缩空气储能技术恰好能够利用水下宽广的海床和水下恒温恒压环境,作为储气场所,储气规模不受限制,为海上可再生能源大规模发展提供高效、低成本的储能技术支撑。
通过水下恒压压缩空气储能与海上可再生能源共建,协同规划,就能实现不稳定、不可控的可再生能源平滑输出,为沿海用户提供稳定可靠的绿色电力供应。
该技术除了可以应用在海上可再生能源开发中,还可用于对现有的压缩空气储能电站进行升级改造。通过给现有的压缩空气储能电站增加地面水池和敷设直通储气装置底部联通管道,实现恒压运行,系统额定效率有望提高3%-6%,避免恒容储气使系统偏离设计工况运行,降低电站运维难度,大幅提高电站运行寿命。
近年来,我们从优化设计、优化运行及实验验证三个层面展开恒压压缩空气储能技术研究。
在优化设计方面:建立了适合于水下恒压压缩空气储能的分析方法,确定了能量损失的源头,揭示了压力能与热能协同高效储存理论,进一步建立了能量损失极小化的优化方法;
在优化运行方面:通过理论分析与实验验证相结合的方法揭示了恒压压缩空气储能关键参数调节特性,提出了多参数联合变工况调控策略,大幅拓宽高效运行范围。
在实验验证方面:为突破水下实验场地和成本限制,提出了基于深水模拟装置的恒压压缩空气储能实验技术,采用高压水和高压气模拟柔性气囊外部深水环境,搭建了兆瓦级恒压压缩空气储能系统实验平台,设计储气压力等效水深约700米。我们已完成了系统性能实验与测试,经具有CNAS资质的第三方测试,系统效率达到国际领先水平,较同规模恒容系统高出6.7%。
同时,我们也开展了储能系统与可再生能源耦合调控实验验证,结果显示,系统具有很好的负荷跟随性能,实验功率跟随误差不超过±5%,且效率均维持在额定效率的90%以上,验证了恒压系统作为发电侧储能的可行性。

恒压压缩空气储能试验平台示意图 (图片来源:中国科学院工程热物理研究所)

兆瓦级恒压压缩空气储能实验平台 (图片来源:中国科学院工程热物理研究所)
结语
未来我们将进一步对水下恒压压缩空气储能的关键部件进行深入研究,突破关键设备在沿海地带高盐雾、高湿度等特殊环境下长期稳定运行的能力,攻克开式水下恒压压缩空气储能中压缩空气在水中的溶解难题、闭式水下恒压压缩空气储能系统中柔性储气装置锚固问题,开展水下压缩空气储能技术工程示范。
相信在不久的将来,水下恒压压缩空气储能技术将逐渐发展成熟并进入产业化阶段,为海上可再生能源发展保驾护航,为实现“双碳”目标注入新的活力。
来源丨科普中国
-
法罗电力助力福莱特4.9MW/9.614MWh储能电站近日正式投运
近日,由法罗电力为福莱特玻璃集团股份有限公司打造的 4.9MW/9.614MWh 用户侧储能项目已圆满完成,投入运营,该项目位于浙江嘉兴福莱特生产基地厂区内,为业主自投模式。该项目预计年发电量500万度,年减排3200吨CO₂。
넶12 2026-02-06 -
-
中建八局南方公司柳城208MW/416MWh独立储能电站项目开工
近日,由中建八局南方公司承建的柳城208MW/416MWh独立储能电站项目在广西柳城县举行开工仪式,各参建单位共同为项目培土奠基,标志着项目正式开工建设。
넶10 2026-02-06 -
双登AIDC储能领跑 全球市场拓新局
2026年1月,双登全员凝心聚力拓市场、精准发力争订单,锚定核心赛道攻坚突破,全域市场开拓取得显著成效,新增订单同比增速超125%,其中锂电占比近60%。订单规模与增长势头双双创下历史新高,以亮眼的经营实绩实现2026年 “开门稳、开门红、开门强” 的强劲开局,为全年高质量发展筑牢坚实根基。
넶12 2026-02-06 -
关于欣旺达动力与威睿达成和解的声明
尊敬的社会各界朋友:
此前,“威睿电动汽车技术(宁波)有限公司”与“欣旺达动力科技股份有限公司”因合同执行纠纷引发诉讼,双方经充分沟通与友好协商已达成和解,我司特发布声明如下:넶12 2026-02-06 -
为储能产业注入金融动能 海博思创与中银金租达成合作
在新型电力系统加速构建的关键阶段,金融资本与储能产业的深度融合正成为行业发展的核心驱动力。近日,北京海博思创科技股份有限公司(简称“海博思创”)与中银金融租赁有限公司(简称“中银金租”)举行合作签约仪式,为储能行业注入金融动能。
넶10 2026-02-06 -
德业股份入股国内领先的液冷温控科技企业·哈希温控
近日,德业股份(以下简称“公司”)基于看好全球AI产业趋势和液冷行业的未来市场前景,对广州哈希温控技术有限责任公司(以下简称“哈希温控”)完成了B轮独家战略投资,此次投资对公司的行业生态战略建设具有重要的战略意义。
넶14 2026-02-06 -
-
503MWh!阿特斯储能斩获美国德州储能大订单
2026年2月5日,阿特斯阳光电力集团(Canadian Solar Inc.,NASDAQ: CSIQ)宣布,其储能解决方案业务子公司阿特斯储能(e-STORAGE)与美国领先的清洁能源电站开发商Sunraycer达成合作协议,将为位于美国德克萨斯州的两个独立储能项目提供储能系统及长期运维服务,项目总规模达503MWh(直流),标志着阿特斯集团在北美储能市场的布局进一步深化。
넶12 2026-02-06 -
极寒验证|大庆40MW/80MWh风电储能项目成功并网
近日,国瑞大庆风电配储项目在黑龙江省大庆市肇源县顺利并网。项目配置40MW/80MWh储能系统,为区域新能源消纳和电网安全运行提供支撑。
넶10 2026-02-06